翻訳と辞書 |
Chebyshev's sum inequality : ウィキペディア英語版 | Chebyshev's sum inequality
In mathematics, Chebyshev's sum inequality, named after Pafnuty Chebyshev, states that if : and : then : Similarly, if : and : then : ==Proof== Consider the sum : The two sequences are non-increasing, therefore and have the same sign for any . Hence . Opening the brackets, we deduce: : whence : An alternative proof is simply obtained with the rearrangement inequality.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Chebyshev's sum inequality」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|